skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phadke, K A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we present improvements to the pointing accuracy of the South Pole Telescope (SPT) using machine learning. The ability of the SPT to point accurately at the sky is limited by its structural imperfections, which are impacted by the extreme weather at the South Pole. Pointing accuracy is particularly important during SPT participation in observing campaigns with the Event Horizon Telescope (EHT), which requires stricter accuracy than typical observations with the SPT. We compile a training dataset of historical observations of astronomical sources made with the SPT-3G and EHT receivers on the SPT. We train two XGBoost models to learn a mapping from current weather conditions to two telescope drive control arguments — one which corrects for errors in azimuth and the other for errors in elevation. Our trained models achieve root mean squared errors on withheld test data of 2[Formula: see text]14 in cross-elevation and 3[Formula: see text]57 in elevation, well below our goal of 5[Formula: see text] along each axis. We deploy our models on the telescope control system and perform further in situ test observations during the EHT observing campaign in April 2024. Our models result in significantly improved pointing accuracy: for sources within the range of input variables where the models are best trained, average combined pointing error improved 33%, from 15[Formula: see text]9 to 10[Formula: see text]6. These improvements, while significant, fall shy of our ultimate goal, but they serve as a proof of concept for the development of future models. Planned upgrades to the EHT receiver on the SPT will necessitate even stricter pointing accuracy which will be achievable with our methods. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in StokesI,Q, andUparameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in StokesQandIfor 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  3. The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial satellites at millimeter wavelengths. Satellite thermal emission is shown to be detectable at high signal-to-noise on timescales as short as a few tens of milliseconds. An algorithm for downloading orbital information and tracking known satellites given observer constraints and time-ordered observatory pointing is described. Consequences for cosmological surveys and short-duration transient searches are discussed, revealing that the integrated thermal emission from all large satellites does not contribute significantly to the SPT-3G survey intensity map. Measured satellite positions are found to be discrepant from their two-line element (TLE) derived ephemerides up to several arcminutes which may present a difficulty in cross-checking or masking satellites from short-duration transient searches. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <z< 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-JCO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger dense gas reservoirs. These observations will serve as a reference point to studies of the ISM in distant luminous DSFGs (LIR> 1012L), and will inform studies of chemical evolution before the peak epoch of star formation atz= 2–3. 
    more » « less
  5. High-redshift dusty star-forming galaxies with very high star formation rates (500−3000 M ⊙ yr −1 ) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these systems can reveal the driving factor behind the high star formation. Using molecular gas tracers such as, high- J CO lines, neutral carbon lines, and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar media. In this paper, we present high resolution (∼0.4″) observations of CO(7−6), [CI](2−1), and dust continuum of three lensed galaxies from the South pole telescope – sub-millimetre galaxies (SPT-SMG) sample at z  ∼ 3 with the Atacama Large Millimetre/submillimetre Array. Our sources have high intrinsic star formation rates (> 850 M ⊙ yr −1 ) and rather short depletion timescales (< 100 Myr). Based on the L [CI](2−1) / L CO(7 − 6) and L [CI](2−1) / L IR ratios, our galaxy sample has similar radiation field intensities and gas densities compared to other submillimetre galaxies. We performed visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H 2 conversion factor α CO , but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103−45 and SPT2147−50 are likely rotating disks, while SPT2357−51 is possibly a major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high- z dusty star-forming galaxies. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present Gemini-S and Spitzer-IRAC optical-through-near-IR observations in the field of the SPT2349-56 proto-cluster at z = 4.3. We detect optical/IR counterparts for only 9 of the 14 submillimetre galaxies (SMGs) previously identified by ALMA in the core of SPT2349-56. In addition, we detect four z ∼ 4 Lyman-break galaxies (LBGs) in the 30 arcsec-diameter region surrounding this proto-cluster core. Three of the four LBGs are new systems, while one appears to be a counterpart of one of the nine observed SMGs. We identify a candidate brightest cluster galaxy (BCG) with a stellar mass of $$(3.2^{+2.3}_{-1.4})\times 10^{11}$$ M⊙. The stellar masses of the eight other SMGs place them on, above, and below the main sequence of star formation at z ≈ 4.5. The cumulative stellar mass for the SPT2349-56 core is at least (12.2 ± 2.8) × 1011 M⊙, a sizeable fraction of the stellar mass in local BCGs, and close to the universal baryon fraction (0.19) relative to the virial mass of the core (1013 M⊙). As all 14 of these SMGs are destined to quickly merge, we conclude that the proto-cluster core has already developed a significant stellar mass at this early stage, comparable to z = 1 BCGs. Importantly, we also find that the SPT2349-56 core structure would be difficult to uncover in optical surveys, with none of the ALMA sources being easily identifiable or constrained through g, r, and i colour selection in deep optical surveys and only a modest overdensity of LBGs over the more extended structure. SPT2349-56 therefore represents a truly dust-obscured phase of a massive cluster core under formation. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT We present Atacama Compact Array and Atacama Pathfinder Experiment observations of the [N ii] 205 μm fine-structure line in 40 sub-millimetre galaxies lying at redshifts z = 3–6, drawn from the 2500 deg2 South Pole Telescope survey. This represents the largest uniformly selected sample of high-redshift [N ii] 205 μm measurements to date. 29 sources also have [C ii] 158 μm line observations allowing a characterization of the distribution of the [C ii] to [N ii] luminosity ratio for the first time at high redshift. The sample exhibits a median L$$_{{\rm{[C\,{\small II}]}}}$$/L$$_{{\rm{[N\,{\small II}]}}}$$ ≈ 11.0 and interquartile range of 5.0 –24.7. These ratios are similar to those observed in local (Ultra)luminous infrared galaxies (LIRGs), possibly indicating similarities in their interstellar medium. At the extremes, we find individual sub-millimetre galaxies with L$$_{{\rm{[C\,{\small II}]}}}$$/L$$_{{\rm{[N\,{\small II}]}}}$$ low enough to suggest a smaller contribution from neutral gas than ionized gas to the [C ii] flux and high enough to suggest strongly photon or X-ray region dominated flux. These results highlight a large range in this line luminosity ratio for sub-millimetre galaxies, which may be caused by variations in gas density, the relative abundances of carbon and nitrogen, ionization parameter, metallicity, and a variation in the fractional abundance of ionized and neutral interstellar medium. 
    more » « less